TMDL PUBLIC MEETING

FOR THE DEVELOPMENT OF THE

Tidal James River PCB TMDL

February 1, 2011

Mark Richards (DEQ - Central Office)

Margaret Smigo (DEQ - Piedmont Regional Office)

Mark.Richards@deq.virginia.gov

Margaret.Smigo@deq.virginia.gov

Presentation Topics

- Background
 - Monitoring & assessment
 - PCB Problem
 - What is a TMDL?
- Why do we care about PCBs?
 - Legacy issue??
- Monitoring Results
- TMDL Process

Environmental Monitoring & Assessment

- The Clean Water Act requires the Department of Environmental Quality (DEQ) to:
 - Collect/analyze water and fish samples
 - Assess the samples by comparing to water quality standards (WQS = narrative or numeric)
 - Designated Uses
 - Primary Contact (Swimming)
 - Aquatic Life
 - Fish Consumption
 - Public Water Supply
 - Shellfish consumption

DEQ Fish Tissue Monitoring

- Monitor to assess the "Fishable" Goal of the Clean Water Act
- Target lipophilic or "fat loving" contaminants that accumulate in tissue
 - PCBs, Pesticides, etc.
- Compare to fish trigger values

VA Regulatory Criteria

Consumption
Advisories
Fish Tissue (ppb)

Water Quality
Criterion
Total PCBs (ppb)

VDH 50
DEQ (screening) 20

0.0017 (old)

-0.00064 (new)

Criterion represents target concentration in the water column that minimizes the bioaccumulation of tPCBs in fish to protect human consumption

Environmental Assessment

- Problem waters are identified in the 305(b)/303(d) Integrated Report (2 year cycle)
 - "Impaired waters" = exceed trigger values
- TMDL required for impaired waters (State & Federal

Law)

Tidal James River Fish Consumption Advisory (VDH) for PCBs

I-95 bridge in Richmond downstream to Hampton Roads Bridge Tunnel

Includes Appomattox R., Bailey Crk, Poythress Run, Bailey Bay, Chickahominy R. (to Walkers Dam)

Fish Species	Advisory
Gizzard Shad, Carp, Blue Cat	tfish Do Not Eat

Blue Catfish & Flathead Catfish < 32 inches, Channel Catfish, White Catfish, Largemouth Bass, Bluegill Sunfish, American Eel, Quilback Carpsucker, Smallmouth Bass, Creek Chub, Yellow Bullhead Catfish, White Perch, Striped Bass, Hickory Shad

& Flathead Catfish > 32 inches

No more than two meals/month

Trend of Total PCB (ng/g) Concentrations in all Fish Species Collected from the Tidal James River & Tributaries (1993 - 2005)

Mean Concentrations of tPCB in Two Catfish species Collected From the Tidal James River and Selected Tributaries (1997 - 2005)

Mean Concentrations of tPCB in Striped Bass Collected From the Tidal James River and Selected Tributaries (1993 - 2005)

Mean Concentrations of tPCB in Carp Collected in the Tidal James River and Selected Tributaries (1995-2005)

Mean Concentrations of tPCB in Gizzard Shad Collected in the Tidal James River and Selected Tributaries (1997-2005)

What is a TMDL or Total Maximum Daily Load?

TMDL = maximum amount of a pollutant that can exist in a waterbody without violating water quality standards (WQS)

Goal = restore impaired waters

TMDL Example

Reducing existing pollutant load to the TMDL end point load is expected to restore water quality

Why are TMDL Studies Necessary?

- Federal & State Laws
 - 1972 Clean Water Act (section 303d)
 - 1997 Water Quality Monitoring, Information and Restoration Act (WQMIRA)
 - 1999 Consent Decree (American Canoeist Association Lawsuit)
- Developed for waterways where WQC not met for applicable designated use
 - Designated Uses
 - Primary Contact (Swimming), Aquatic Life, Fish Consumption, Public Water Supply, Shellfish consumption

How Does a TMDL Restore Impaired Waters?

- TMDL process includes a special study that:
 - Identifies pollutant sources (non-point and point sources)
 - Determines pollution contributed by source
 - Estimates pollution reductions necessary to attain WQS

WLA + LA + MOS = TMDL

WLA = waste load allocation (point sources)

LA = load allocation (non-point sources)

MOS = margin of safety (usually implicit)

TMDL= total maximum daily load

What are the Steps in the TMDL Process?

I. TMDL Study

- I. Public notice and comment period of study initiation
- II. Additional monitoring, source evaluation and watershed modeling
- III. Public notice for Draft TMDL
- IV. Public meeting and comment period
- V. Final draft approved by EPA and SWCB
- II. Implementation thru Adaptive
 Management with Appropriate
 Corrective Actions Prescribed by Final
 TMDL

What are PCBs and why do we care about them?

• Biphenyl molecule (1-10 chlorine atoms)

- 209 distinct PCB Compounds
- Regulated by VADEQ as Total PCB (tPCB) = 209 Compounds Summed
- Referred to as PCB Aroclors (Monsanto tradename) = mixture of PCB compounds

PCB 101

- Very stable and heat resistant
 - Persistent in environment
- Common uses:
 - Transformers, capacitors, hydraulic fluids, circuit breakers, PVC Products, carbonless copy paper, caulking material, paints, etc.

PCBs - A Legacy Pollutant?

- Banned in late 70's
- Accumulate and persist in river sediments from historic releases
 - "Hot Spots"
- Traditionally not detected under VPDES (permitting) Program

PCBs - Current Releases(?)

- PCBs used many years after banned
- Contaminated sites with active transport (non-point e.g., CERCLA, RCRA, VRP, unknown)
- Point Sources
- Dielectric oils considered non PCB < 50 ppm
 - Fish advisories at 0.05 ppm
- Inadvertent production
 - Carbon + heat + chlorine
 - Up to 50 ppm allowed (TSCA)
- Atmosphere

NO PCE

How Are Fish Exposed To PCBs?

- Intake through gills from water column
 - Basis of existing WQC (1980 EPA guidelines)
- Ingestion of contaminated sediment
 - Indirect uptake from foraging

- Ingestion of prey
 - Biomagnification

Why are PCBs an Issue?

- Bioaccumulates at low conc. (lipids)
- WQC = 0.00064 ug/L

- Suspected carcinogen
- Other toxicological effects (humans)
 - Immunotoxicity, reproduction and developmental, hepatotoxicity (liver), neurotoxicity, and chloracne
- Major Sources of Exposure (humans)
 - Consumption of contaminated fish
 - Inhalation (dust from contaminated sites)

PCB Water Study

- Water samples
 collected April May
 2009 and at selected
 stations in April 2010
- Targeted wet and dry weather
- Used EPA Method 1668 for analysis
 - Low level detection method

tPCB Concentrations in Ambient River Water Collected from the Tidal James River Mainstem

Mean tPCB Concentrations from Ambient Water in Four Watersheds Collected Before and After Precipitation Events

Concentrations of tPCBs in Sediments Collected in the Mainstern James River

(Sampling Yrs '95, '96, '97, '01, '04, '05)

River mile

Eg. - sediment threshold to protect fish = 7.6 ng/g (Potomac R. PCB TMDL)

Mean tPCB Concentrations in Sediments Collected from Tributaries to the James River

Samples Collected '96 - '05

TMDL Source Assessment

- Load Categories-

- Point Sources
 - WWTPs, Industry, Industrial SW, CSOs
 - MS4
- Non-point Sources
 - Non-Regulated Stormwater (Direct Drainage)
 - Contaminated Sites
 - Atmospheric Deposition
 - River Sediment

Point Sources

- DEQ requested voluntary monitoring of point source outfalls
 - Informational meetings held:
 - Upper Tidal James- September 2009
 - Middle & Lower Tidal James October 2010
 - Elizabeth River November 2009
 - PCB Data requested by Sept. Oct. 2011
 - Facilities selected in accordance with DEQ's PCB Guidance Document

See: http://www.deq.virginia.gov/tmdl/pcb.html

Components of TMDL Study

Fish Consumption Advisory

Identify Problem

On-going

Source Assessment

- Identify sources
- Estimate source loading

Method 1668 Low Level PCB Analysis

Link Sources to Targets

- Assess linkages
- Estimate total loading capacity

TMDL Allocations

Divide loads among sources (WLA and LA)

WLA + LA + MOS = TMDL

Tidal James River PCB TMDL

In Summary...

Implementation

We Are Here

• Identifies permit controls, best management practices, or remediation options needed to make necessary pollutant reductions

- Tracks pollutants in the system
- Sets maximum pollutant load
- Estimates necessary pollutant reductions

The Process

Total
Maximum
Daily
Load

needed to make necessary Implementation

Water quality standards met

Water quality standards not met

TMDL Study

Public Comment Period February 2 thru March 4, 2011

Please Submit Comments To:

Margaret Smigo

4949-A Cox Rd

Glen Allen, VA 23060

or

Margaret.Smigo@deq.virginia.gov

Station ID	Station Description	Date	Sample Type	Total PCBs (pg/L)			
James River Mainstem							
2-JMS110.34	South Channel last riffle above Mayos Bridge (Fall line)	4/15/2009	Dry	843			
		5/7/2009	Wet	505			
2-JMS110.44	North Channel (Fall line)	5/7/2009	Wet	589			
2-JMS087.01	James River at Buoy 137	5/19/2009	Dry	1,413			
		4/16/2009	Wet	894			
2-JMS074.44	James R. at Rt 156, Benjamin Harrison Bridge	5/19/2009	Dry	212			
		4/16/2009	Wet	214			
2-JMS069.08	James River opposite Herring Creek, Buoy 91	4/28/2010	Dry	429			
0. 1140000 00	James R. at powerline at Windmill Pt., Buoy 86	5/19/2009	Dry	254			
2-JMS066.88		4/21/2009	Wet	492			
2-JMS057.69	James River at Bachelor Pt, Buoy 74A	4/28/2010	Dry	666			
		10/4/2010	Wet	593			
2-JMS050.57	James River opposite Dancing Pt, Buoy 66	8/3/2010	Dry	452			
		5/19/2010	Wet	388			
Appomattox River							
2-APP012.79	Appomattox R. at Rt. 36, Petersburg	5/20/2009	Dry	398			
		4/16/2009	Wet	221			
		5/19/2009	Dry	162			
2-APP001.53	Appomattox R. at Rt. 10, Hopewell	4/16/2009	Wet	245			
Chickahominy River							
2-CHK006.14	Chickahominy River, 700 meters above Shields Pt.	4/28/2010	Dry	352			
		5/19/2010	Wet	188			

Richmond Area Tributaries (James River)						
2-KAN000.03	Kanawha Canal outfall to James	4/15/2009	Dry	17,993		
2-KAN000.03	R. just above Great Ship Lock	5/26/2009	Wet	301		
2-GIL000.42	Gillie Creek at Williamsburg Rd	5/26/2009	Dry	2,936		
		5/7/2009	Wet	2,552 †		
Richmond		5/26/2009	Dry	982		
CSO-028	Gillie Creek Open CSO	5/7/2009	Wet	887		
2-ALM000.42	Almond Creek at Rt. 5	6/18/2009	Dry	3,719		
		5/26/2009	Wet	5,290		
		4/15/2009	Dry	965		
2-GOD000.77	Goode Creek at Commerce Rd.	5/26/2009	Wet	777		
		5/20/2009	Dry	32		
2-FAC000.85	Falling Creek at Rt. 1	5/7/2009	Wet	203		
2-MAN000.19	Manchester Canal below CSO #014	6/30/2009	Dry	5,061		
2-CEL001.56	Cornelius Creek at Mill Rd	6/30/2009	Dry	21		
2-PCT002.46	Proctors Creek at Rt. 1	6/30/2009	Wet (?)	130		
2-XYS000.15	DuPont Spruance East Ditch	5/7/2009	Wet	1,012		
2-XSZ002.04	No Name Crk from DGS Center	5/7/2009	Wet	704		
2-GRK000.35	Grindall Creek at Station Rd	6/30/2009	Dry	970		
2- RDW000.50	Redwater Crk below transformer cracking facility	5/7/2009	Wet	462		
2-KSL002.62	Kingsland Crk at Rt. 1 below DGSC stormwater	6/18/2009	Wet	976*		

Hopewell Area Tributaries						
2-BLY000.65	Bailey Creek at Rt. 10	5/20/2009	Dry	1,335		
		4/16/2009	Wet	4,091		
2-BLY003.42	Bailey Creek at Rt. 156	5/20/2009	Dry	333		
		4/16/2009	Wet	167		
2-BLY005.73	Bailey Creek below Ft. Lee at Rt. 630	6/18/2009	Dry	300		
2- CXAN000.08	UT to Bailey Crk. (Bear Crk.)	6/4/2009	Wet	8,770		
2-GRV000.01	Gravelly Run 15 M above mouth	5/27/2009	Dry	490		
		4/21/2009	Wet	1,684		
2-XYO000.03	UT to Cattail Creek at private rd. culvert	5/20/2009	Dry	3,952		
		4/21/2009	Wet	3.214		

4/21/2009

5/20/2009

4/21/2009

6/18/2009

6/18/2009

6/18/2009

Misc. PCB Sample Results

2-PTH000.42

Nelson Ditch

SIMSCR

Unnamed

Pond

Poythress Run at Station Street

Drainage ditch from Nelson

Electric

South channel draining Sims

Metals

Unnamed Pond between

Commerce Rd and the James

River; below Peck Metals Fluff Pile

Wet

Dry

Wet

Wet

Dry

Dry

3,214

233,484

168,606

434,768

6,988*

37,760*